1
0
mirror of https://github.com/bitwarden/browser synced 2025-12-17 00:33:44 +00:00

[PM-17665] Move cryptofunction service to km (#13285)

* Move cryptofunction service to km

* Fix formatting

* Fix import

* Fix build on desktop

* Fix build on browser and tests
This commit is contained in:
Bernd Schoolmann
2025-04-10 11:09:35 +02:00
committed by GitHub
parent 46470cce2a
commit 5a1b0744f0
62 changed files with 81 additions and 75 deletions

View File

@@ -1,89 +0,0 @@
import { CsprngArray } from "../../types/csprng";
import { CbcDecryptParameters, EcbDecryptParameters } from "../models/domain/decrypt-parameters";
import { SymmetricCryptoKey } from "../models/domain/symmetric-crypto-key";
export abstract class CryptoFunctionService {
abstract pbkdf2(
password: string | Uint8Array,
salt: string | Uint8Array,
algorithm: "sha256" | "sha512",
iterations: number,
): Promise<Uint8Array>;
abstract argon2(
password: string | Uint8Array,
salt: string | Uint8Array,
iterations: number,
memory: number,
parallelism: number,
): Promise<Uint8Array>;
abstract hkdf(
ikm: Uint8Array,
salt: string | Uint8Array,
info: string | Uint8Array,
outputByteSize: number,
algorithm: "sha256" | "sha512",
): Promise<Uint8Array>;
abstract hkdfExpand(
prk: Uint8Array,
info: string | Uint8Array,
outputByteSize: number,
algorithm: "sha256" | "sha512",
): Promise<Uint8Array>;
abstract hash(
value: string | Uint8Array,
algorithm: "sha1" | "sha256" | "sha512" | "md5",
): Promise<Uint8Array>;
abstract hmac(
value: Uint8Array,
key: Uint8Array,
algorithm: "sha1" | "sha256" | "sha512",
): Promise<Uint8Array>;
abstract compare(a: Uint8Array, b: Uint8Array): Promise<boolean>;
abstract hmacFast(
value: Uint8Array | string,
key: Uint8Array | string,
algorithm: "sha1" | "sha256" | "sha512",
): Promise<Uint8Array | string>;
abstract compareFast(a: Uint8Array | string, b: Uint8Array | string): Promise<boolean>;
abstract aesEncrypt(data: Uint8Array, iv: Uint8Array, key: Uint8Array): Promise<Uint8Array>;
abstract aesDecryptFastParameters(
data: string,
iv: string,
mac: string,
key: SymmetricCryptoKey,
): CbcDecryptParameters<Uint8Array | string>;
abstract aesDecryptFast({
mode,
parameters,
}:
| { mode: "cbc"; parameters: CbcDecryptParameters<Uint8Array | string> }
| { mode: "ecb"; parameters: EcbDecryptParameters<Uint8Array | string> }): Promise<string>;
abstract aesDecrypt(
data: Uint8Array,
iv: Uint8Array,
key: Uint8Array,
mode: "cbc" | "ecb",
): Promise<Uint8Array>;
abstract rsaEncrypt(
data: Uint8Array,
publicKey: Uint8Array,
algorithm: "sha1" | "sha256",
): Promise<Uint8Array>;
abstract rsaDecrypt(
data: Uint8Array,
privateKey: Uint8Array,
algorithm: "sha1" | "sha256",
): Promise<Uint8Array>;
abstract rsaExtractPublicKey(privateKey: Uint8Array): Promise<Uint8Array>;
abstract rsaGenerateKeyPair(length: 1024 | 2048 | 4096): Promise<[Uint8Array, Uint8Array]>;
/**
* Generates a key of the given length suitable for use in AES encryption
*/
abstract aesGenerateKey(bitLength: 128 | 192 | 256 | 512): Promise<CsprngArray>;
/**
* Generates a random array of bytes of the given length. Uses a cryptographically secure random number generator.
*
* Do not use this for generating encryption keys. Use aesGenerateKey or rsaGenerateKeyPair instead.
*/
abstract randomBytes(length: number): Promise<CsprngArray>;
}

View File

@@ -2,8 +2,8 @@ import { mock } from "jest-mock-extended";
import { PBKDF2KdfConfig, Argon2KdfConfig } from "@bitwarden/key-management";
import { CryptoFunctionService } from "../../key-management/crypto/abstractions/crypto-function.service";
import { CsprngArray } from "../../types/csprng";
import { CryptoFunctionService } from "../abstractions/crypto-function.service";
import { KeyGenerationService } from "./key-generation.service";

View File

@@ -2,8 +2,8 @@
// @ts-strict-ignore
import { KdfConfig, PBKDF2KdfConfig, Argon2KdfConfig, KdfType } from "@bitwarden/key-management";
import { CryptoFunctionService } from "../../key-management/crypto/abstractions/crypto-function.service";
import { CsprngArray } from "../../types/csprng";
import { CryptoFunctionService } from "../abstractions/crypto-function.service";
import { KeyGenerationService as KeyGenerationServiceAbstraction } from "../abstractions/key-generation.service";
import { Utils } from "../misc/utils";
import { SymmetricCryptoKey } from "../models/domain/symmetric-crypto-key";

View File

@@ -1,611 +0,0 @@
import { mock } from "jest-mock-extended";
import { Utils } from "../../platform/misc/utils";
import { PlatformUtilsService } from "../abstractions/platform-utils.service";
import { EcbDecryptParameters } from "../models/domain/decrypt-parameters";
import { SymmetricCryptoKey } from "../models/domain/symmetric-crypto-key";
import { WebCryptoFunctionService } from "./web-crypto-function.service";
const RsaPublicKey =
"MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAl0Vawl/toXzkEvB82FEtqHP" +
"4xlU2ab/v0crqIfXfIoWF/XXdHGIdrZeilnRXPPJT1B9dTsasttEZNnua/0Rek/cjNDHtzT52irfoZYS7X6HNIfOi54Q+egP" +
"RQ1H7iNHVZz3K8Db9GCSKPeC8MbW6gVCzb15esCe1gGzg6wkMuWYDFYPoh/oBqcIqrGah7firqB1nDedzEjw32heP2DAffVN" +
"084iTDjiWrJNUxBJ2pDD5Z9dT3MzQ2s09ew1yMWK2z37rT3YerC7OgEDmo3WYo3xL3qYJznu3EO2nmrYjiRa40wKSjxsTlUc" +
"xDF+F0uMW8oR9EMUHgepdepfAtLsSAQIDAQAB";
const RsaPrivateKey =
"MIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCXRVrCX+2hfOQS8Hz" +
"YUS2oc/jGVTZpv+/Ryuoh9d8ihYX9dd0cYh2tl6KWdFc88lPUH11Oxqy20Rk2e5r/RF6T9yM0Me3NPnaKt+hlhLtfoc0h86L" +
"nhD56A9FDUfuI0dVnPcrwNv0YJIo94LwxtbqBULNvXl6wJ7WAbODrCQy5ZgMVg+iH+gGpwiqsZqHt+KuoHWcN53MSPDfaF4/" +
"YMB99U3TziJMOOJask1TEEnakMPln11PczNDazT17DXIxYrbPfutPdh6sLs6AQOajdZijfEvepgnOe7cQ7aeatiOJFrjTApK" +
"PGxOVRzEMX4XS4xbyhH0QxQeB6l16l8C0uxIBAgMBAAECggEASaWfeVDA3cVzOPFSpvJm20OTE+R6uGOU+7vh36TX/POq92q" +
"Buwbd0h0oMD32FxsXywd2IxtBDUSiFM9699qufTVuM0Q3tZw6lHDTOVG08+tPdr8qSbMtw7PGFxN79fHLBxejjO4IrM9lapj" +
"WpxEF+11x7r+wM+0xRZQ8sNFYG46aPfIaty4BGbL0I2DQ2y8I57iBCAy69eht59NLMm27fRWGJIWCuBIjlpfzET1j2HLXUIh" +
"5bTBNzqaN039WH49HczGE3mQKVEJZc/efk3HaVd0a1Sjzyn0QY+N1jtZN3jTRbuDWA1AknkX1LX/0tUhuS3/7C3ejHxjw4Dk" +
"1ZLo5/QKBgQDIWvqFn0+IKRSu6Ua2hDsufIHHUNLelbfLUMmFthxabcUn4zlvIscJO00Tq/ezopSRRvbGiqnxjv/mYxucvOU" +
"BeZtlus0Q9RTACBtw9TGoNTmQbEunJ2FOSlqbQxkBBAjgGEppRPt30iGj/VjAhCATq2MYOa/X4dVR51BqQAFIEwKBgQDBSIf" +
"TFKC/hDk6FKZlgwvupWYJyU9RkyfstPErZFmzoKhPkQ3YORo2oeAYmVUbS9I2iIYpYpYQJHX8jMuCbCz4ONxTCuSIXYQYUcU" +
"q4PglCKp31xBAE6TN8SvhfME9/MvuDssnQinAHuF0GDAhF646T3LLS1not6Vszv7brwSoGwKBgQC88v/8cGfi80ssQZeMnVv" +
"q1UTXIeQcQnoY5lGHJl3K8mbS3TnXE6c9j417Fdz+rj8KWzBzwWXQB5pSPflWcdZO886Xu/mVGmy9RWgLuVFhXwCwsVEPjNX" +
"5ramRb0/vY0yzenUCninBsIxFSbIfrPtLUYCc4hpxr+sr2Mg/y6jpvQKBgBezMRRs3xkcuXepuI2R+BCXL1/b02IJTUf1F+1" +
"eLLGd7YV0H+J3fgNc7gGWK51hOrF9JBZHBGeOUPlaukmPwiPdtQZpu4QNE3l37VlIpKTF30E6mb+BqR+nht3rUjarnMXgAoE" +
"Z18y6/KIjpSMpqC92Nnk/EBM9EYe6Cf4eA9ApAoGAeqEUg46UTlJySkBKURGpIs3v1kkf5I0X8DnOhwb+HPxNaiEdmO7ckm8" +
"+tPVgppLcG0+tMdLjigFQiDUQk2y3WjyxP5ZvXu7U96jaJRI8PFMoE06WeVYcdIzrID2HvqH+w0UQJFrLJ/0Mn4stFAEzXKZ" +
"BokBGnjFnTnKcs7nv/O8=";
const Sha1Mac = "4d4c223f95dc577b665ec4ccbcb680b80a397038";
const Sha256Mac = "6be3caa84922e12aaaaa2f16c40d44433bb081ef323db584eb616333ab4e874f";
const Sha512Mac =
"21910e341fa12106ca35758a2285374509326c9fbe0bd64e7b99c898f841dc948c58ce66d3504d8883c" +
"5ea7817a0b7c5d4d9b00364ccd214669131fc17fe4aca";
describe("WebCrypto Function Service", () => {
describe("pbkdf2", () => {
const regular256Key = "pj9prw/OHPleXI6bRdmlaD+saJS4awrMiQsQiDjeu2I=";
const utf8256Key = "yqvoFXgMRmHR3QPYr5pyR4uVuoHkltv9aHUP63p8n7I=";
const unicode256Key = "ZdeOata6xoRpB4DLp8zHhXz5kLmkWtX5pd+TdRH8w8w=";
const regular512Key =
"liTi/Ke8LPU1Qv+Vl7NGEVt/XMbsBVJ2kQxtVG/Z1/JFHFKQW3ZkI81qVlwTiCpb+cFXzs+57" +
"eyhhx5wfKo5Cg==";
const utf8512Key =
"df0KdvIBeCzD/kyXptwQohaqUa4e7IyFUyhFQjXCANu5T+scq55hCcE4dG4T/MhAk2exw8j7ixRN" +
"zXANiVZpnw==";
const unicode512Key =
"FE+AnUJaxv8jh+zUDtZz4mjjcYk0/PZDZm+SLJe3XtxtnpdqqpblX6JjuMZt/dYYNMOrb2+mD" +
"L3FiQDTROh1lg==";
testPbkdf2("sha256", regular256Key, utf8256Key, unicode256Key);
testPbkdf2("sha512", regular512Key, utf8512Key, unicode512Key);
});
describe("hkdf", () => {
const regular256Key = "qBUmEYtwTwwGPuw/z6bs/qYXXYNUlocFlyAuuANI8Pw=";
const utf8256Key = "6DfJwW1R3txgiZKkIFTvVAb7qVlG7lKcmJGJoxR2GBU=";
const unicode256Key = "gejGI82xthA+nKtKmIh82kjw+ttHr+ODsUoGdu5sf0A=";
const regular512Key = "xe5cIG6ZfwGmb1FvsOedM0XKOm21myZkjL/eDeKIqqM=";
const utf8512Key = "XQMVBnxVEhlvjSFDQc77j5GDE9aorvbS0vKnjhRg0LY=";
const unicode512Key = "148GImrTbrjaGAe/iWEpclINM8Ehhko+9lB14+52lqc=";
testHkdf("sha256", regular256Key, utf8256Key, unicode256Key);
testHkdf("sha512", regular512Key, utf8512Key, unicode512Key);
});
describe("hkdfExpand", () => {
const prk16Byte = "criAmKtfzxanbgea5/kelQ==";
const prk32Byte = "F5h4KdYQnIVH4rKH0P9CZb1GrR4n16/sJrS0PsQEn0Y=";
const prk64Byte =
"ssBK0mRG17VHdtsgt8yo4v25CRNpauH+0r2fwY/E9rLyaFBAOMbIeTry+" +
"gUJ28p8y+hFh3EI9pcrEWaNvFYonQ==";
testHkdfExpand("sha256", prk32Byte, 32, "BnIqJlfnHm0e/2iB/15cbHyR19ARPIcWRp4oNS22CD8=");
testHkdfExpand(
"sha256",
prk32Byte,
64,
"BnIqJlfnHm0e/2iB/15cbHyR19ARPIcWRp4oNS22CD9BV+" +
"/queOZenPNkDhmlVyL2WZ3OSU5+7ISNF5NhNfvZA==",
);
testHkdfExpand("sha512", prk64Byte, 32, "uLWbMWodSBms5uGJ5WTRTesyW+MD7nlpCZvagvIRXlk=");
testHkdfExpand(
"sha512",
prk64Byte,
64,
"uLWbMWodSBms5uGJ5WTRTesyW+MD7nlpCZvagvIRXlkY5Pv0sB+" +
"MqvaopmkC6sD/j89zDwTV9Ib2fpucUydO8w==",
);
it("should fail with prk too small", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const f = cryptoFunctionService.hkdfExpand(
Utils.fromB64ToArray(prk16Byte),
"info",
32,
"sha256",
);
await expect(f).rejects.toEqual(new Error("prk is too small."));
});
it("should fail with outputByteSize is too large", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const f = cryptoFunctionService.hkdfExpand(
Utils.fromB64ToArray(prk32Byte),
"info",
8161,
"sha256",
);
await expect(f).rejects.toEqual(new Error("outputByteSize is too large."));
});
});
describe("hash", () => {
const regular1Hash = "2a241604fb921fad12bf877282457268e1dccb70";
const utf81Hash = "85672798dc5831e96d6c48655d3d39365a9c88b6";
const unicode1Hash = "39c975935054a3efc805a9709b60763a823a6ad4";
const regular256Hash = "2b8e96031d352a8655d733d7a930b5ffbea69dc25cf65c7bca7dd946278908b2";
const utf8256Hash = "25fe8440f5b01ed113b0a0e38e721b126d2f3f77a67518c4a04fcde4e33eeb9d";
const unicode256Hash = "adc1c0c2afd6e92cefdf703f9b6eb2c38e0d6d1a040c83f8505c561fea58852e";
const regular512Hash =
"c15cf11d43bde333647e3f559ec4193bb2edeaa0e8b902772f514cdf3f785a3f49a6e02a4b87b3" +
"b47523271ad45b7e0aebb5cdcc1bc54815d256eb5dcb80da9d";
const utf8512Hash =
"035c31a877a291af09ed2d3a1a293e69c3e079ea2cecc00211f35e6bce10474ca3ad6e30b59e26118" +
"37463f20969c5bc95282965a051a88f8cdf2e166549fcdd";
const unicode512Hash =
"2b16a5561af8ad6fe414cc103fc8036492e1fc6d9aabe1b655497054f760fe0e34c5d100ac773d" +
"9f3030438284f22dbfa20cb2e9b019f2c98dfe38ce1ef41bae";
const regularMd5 = "5eceffa53a5fd58c44134211e2c5f522";
const utf8Md5 = "3abc9433c09551b939c80aa0aa3174e1";
const unicodeMd5 = "85ae134072c8d81257933f7045ba17ca";
testHash("sha1", regular1Hash, utf81Hash, unicode1Hash);
testHash("sha256", regular256Hash, utf8256Hash, unicode256Hash);
testHash("sha512", regular512Hash, utf8512Hash, unicode512Hash);
testHash("md5", regularMd5, utf8Md5, unicodeMd5);
});
describe("hmac", () => {
testHmac("sha1", Sha1Mac);
testHmac("sha256", Sha256Mac);
testHmac("sha512", Sha512Mac);
});
describe("compare", () => {
it("should successfully compare two of the same values", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const a = new Uint8Array(2);
a[0] = 1;
a[1] = 2;
const equal = await cryptoFunctionService.compare(a, a);
expect(equal).toBe(true);
});
it("should successfully compare two different values of the same length", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const a = new Uint8Array(2);
a[0] = 1;
a[1] = 2;
const b = new Uint8Array(2);
b[0] = 3;
b[1] = 4;
const equal = await cryptoFunctionService.compare(a, b);
expect(equal).toBe(false);
});
it("should successfully compare two different values of different lengths", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const a = new Uint8Array(2);
a[0] = 1;
a[1] = 2;
const b = new Uint8Array(2);
b[0] = 3;
const equal = await cryptoFunctionService.compare(a, b);
expect(equal).toBe(false);
});
});
describe("hmacFast", () => {
testHmacFast("sha1", Sha1Mac);
testHmacFast("sha256", Sha256Mac);
testHmacFast("sha512", Sha512Mac);
});
describe("compareFast", () => {
it("should successfully compare two of the same values", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const a = new Uint8Array(2);
a[0] = 1;
a[1] = 2;
const aByteString = Utils.fromBufferToByteString(a);
const equal = await cryptoFunctionService.compareFast(aByteString, aByteString);
expect(equal).toBe(true);
});
it("should successfully compare two different values of the same length", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const a = new Uint8Array(2);
a[0] = 1;
a[1] = 2;
const aByteString = Utils.fromBufferToByteString(a);
const b = new Uint8Array(2);
b[0] = 3;
b[1] = 4;
const bByteString = Utils.fromBufferToByteString(b);
const equal = await cryptoFunctionService.compareFast(aByteString, bByteString);
expect(equal).toBe(false);
});
it("should successfully compare two different values of different lengths", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const a = new Uint8Array(2);
a[0] = 1;
a[1] = 2;
const aByteString = Utils.fromBufferToByteString(a);
const b = new Uint8Array(2);
b[0] = 3;
const bByteString = Utils.fromBufferToByteString(b);
const equal = await cryptoFunctionService.compareFast(aByteString, bByteString);
expect(equal).toBe(false);
});
});
describe("aesEncrypt CBC mode", () => {
it("should successfully encrypt data", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const iv = makeStaticByteArray(16);
const key = makeStaticByteArray(32);
const data = Utils.fromUtf8ToArray("EncryptMe!");
const encValue = await cryptoFunctionService.aesEncrypt(data, iv, key);
expect(Utils.fromBufferToB64(encValue)).toBe("ByUF8vhyX4ddU9gcooznwA==");
});
it("should successfully encrypt and then decrypt data fast", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const iv = makeStaticByteArray(16);
const key = makeStaticByteArray(32);
const value = "EncryptMe!";
const data = Utils.fromUtf8ToArray(value);
const encValue = await cryptoFunctionService.aesEncrypt(data, iv, key);
const encData = Utils.fromBufferToB64(encValue);
const b64Iv = Utils.fromBufferToB64(iv);
const symKey = new SymmetricCryptoKey(key);
const parameters = cryptoFunctionService.aesDecryptFastParameters(
encData,
b64Iv,
null,
symKey,
);
const decValue = await cryptoFunctionService.aesDecryptFast({ mode: "cbc", parameters });
expect(decValue).toBe(value);
});
it("should successfully encrypt and then decrypt data", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const iv = makeStaticByteArray(16);
const key = makeStaticByteArray(32);
const value = "EncryptMe!";
const data = Utils.fromUtf8ToArray(value);
const encValue = new Uint8Array(await cryptoFunctionService.aesEncrypt(data, iv, key));
const decValue = await cryptoFunctionService.aesDecrypt(encValue, iv, key, "cbc");
expect(Utils.fromBufferToUtf8(decValue)).toBe(value);
});
});
describe("aesDecryptFast CBC mode", () => {
it("should successfully decrypt data", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const iv = Utils.fromBufferToB64(makeStaticByteArray(16));
const symKey = new SymmetricCryptoKey(makeStaticByteArray(32));
const data = "ByUF8vhyX4ddU9gcooznwA==";
const parameters = cryptoFunctionService.aesDecryptFastParameters(data, iv, null, symKey);
const decValue = await cryptoFunctionService.aesDecryptFast({ mode: "cbc", parameters });
expect(decValue).toBe("EncryptMe!");
});
});
describe("aesDecryptFast ECB mode", () => {
it("should successfully decrypt data", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const key = makeStaticByteArray(32);
const data = Utils.fromB64ToArray("z5q2XSxYCdQFdI+qK2yLlw==");
const parameters: EcbDecryptParameters<string> = {
encKey: Utils.fromBufferToByteString(key),
data: Utils.fromBufferToByteString(data),
};
const decValue = await cryptoFunctionService.aesDecryptFast({ mode: "ecb", parameters });
expect(decValue).toBe("EncryptMe!");
});
});
describe("aesDecrypt CBC mode", () => {
it("should successfully decrypt data", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const iv = makeStaticByteArray(16);
const key = makeStaticByteArray(32);
const data = Utils.fromB64ToArray("ByUF8vhyX4ddU9gcooznwA==");
const decValue = await cryptoFunctionService.aesDecrypt(data, iv, key, "cbc");
expect(Utils.fromBufferToUtf8(decValue)).toBe("EncryptMe!");
});
it("throws if iv is not provided", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const key = makeStaticByteArray(32);
const data = Utils.fromB64ToArray("ByUF8vhyX4ddU9gcooznwA==");
await expect(() => cryptoFunctionService.aesDecrypt(data, null, key, "cbc")).rejects.toThrow(
"IV is required for CBC mode",
);
});
});
describe("aesDecrypt ECB mode", () => {
it("should successfully decrypt data", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const key = makeStaticByteArray(32);
const data = Utils.fromB64ToArray("z5q2XSxYCdQFdI+qK2yLlw==");
const decValue = await cryptoFunctionService.aesDecrypt(data, null, key, "ecb");
expect(Utils.fromBufferToUtf8(decValue)).toBe("EncryptMe!");
});
});
describe("rsaEncrypt", () => {
it("should successfully encrypt and then decrypt data", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const pubKey = Utils.fromB64ToArray(RsaPublicKey);
const privKey = Utils.fromB64ToArray(RsaPrivateKey);
const value = "EncryptMe!";
const data = Utils.fromUtf8ToArray(value);
const encValue = new Uint8Array(await cryptoFunctionService.rsaEncrypt(data, pubKey, "sha1"));
const decValue = await cryptoFunctionService.rsaDecrypt(encValue, privKey, "sha1");
expect(Utils.fromBufferToUtf8(decValue)).toBe(value);
});
});
describe("rsaDecrypt", () => {
it("should successfully decrypt data", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const privKey = Utils.fromB64ToArray(RsaPrivateKey);
const data = Utils.fromB64ToArray(
"A1/p8BQzN9UrbdYxUY2Va5+kPLyfZXF9JsZrjeEXcaclsnHurdxVAJcnbEqYMP3UXV" +
"4YAS/mpf+Rxe6/X0WS1boQdA0MAHSgx95hIlAraZYpiMLLiJRKeo2u8YivCdTM9V5vuAEJwf9Tof/qFsFci3sApdbATkorCT" +
"zFOIEPF2S1zgperEP23M01mr4dWVdYN18B32YF67xdJHMbFhp5dkQwv9CmscoWq7OE5HIfOb+JAh7BEZb+CmKhM3yWJvoR/D" +
"/5jcercUtK2o+XrzNrL4UQ7yLZcFz6Bfwb/j6ICYvqd/YJwXNE6dwlL57OfwJyCdw2rRYf0/qI00t9u8Iitw==",
);
const decValue = await cryptoFunctionService.rsaDecrypt(data, privKey, "sha1");
expect(Utils.fromBufferToUtf8(decValue)).toBe("EncryptMe!");
});
});
describe("rsaExtractPublicKey", () => {
it("should successfully extract key", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const privKey = Utils.fromB64ToArray(RsaPrivateKey);
const publicKey = await cryptoFunctionService.rsaExtractPublicKey(privKey);
expect(Utils.fromBufferToB64(publicKey)).toBe(RsaPublicKey);
});
});
describe("rsaGenerateKeyPair", () => {
testRsaGenerateKeyPair(1024);
testRsaGenerateKeyPair(2048);
// Generating 4096 bit keys can be slow. Commenting it out to save CI.
// testRsaGenerateKeyPair(4096);
});
describe("randomBytes", () => {
it("should make a value of the correct length", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const randomData = await cryptoFunctionService.randomBytes(16);
expect(randomData.byteLength).toBe(16);
});
it("should not make the same value twice", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const randomData = await cryptoFunctionService.randomBytes(16);
const randomData2 = await cryptoFunctionService.randomBytes(16);
expect(
randomData.byteLength === randomData2.byteLength && randomData !== randomData2,
).toBeTruthy();
});
});
describe("aesGenerateKey", () => {
it.each([128, 192, 256, 512])("Should make a key of %s bits long", async (length) => {
const cryptoFunctionService = getWebCryptoFunctionService();
const key = await cryptoFunctionService.aesGenerateKey(length);
expect(key.byteLength * 8).toBe(length);
});
it("should not repeat itself for 512 length special case", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const key = await cryptoFunctionService.aesGenerateKey(512);
expect(key.slice(0, 32)).not.toEqual(key.slice(32, 64));
});
});
});
function testPbkdf2(
algorithm: "sha256" | "sha512",
regularKey: string,
utf8Key: string,
unicodeKey: string,
) {
const regularEmail = "user@example.com";
const utf8Email = "üser@example.com";
const regularPassword = "password";
const utf8Password = "pǻssword";
const unicodePassword = "😀password🙏";
it("should create valid " + algorithm + " key from regular input", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const key = await cryptoFunctionService.pbkdf2(regularPassword, regularEmail, algorithm, 5000);
expect(Utils.fromBufferToB64(key)).toBe(regularKey);
});
it("should create valid " + algorithm + " key from utf8 input", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const key = await cryptoFunctionService.pbkdf2(utf8Password, utf8Email, algorithm, 5000);
expect(Utils.fromBufferToB64(key)).toBe(utf8Key);
});
it("should create valid " + algorithm + " key from unicode input", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const key = await cryptoFunctionService.pbkdf2(unicodePassword, regularEmail, algorithm, 5000);
expect(Utils.fromBufferToB64(key)).toBe(unicodeKey);
});
it("should create valid " + algorithm + " key from array buffer input", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const key = await cryptoFunctionService.pbkdf2(
Utils.fromUtf8ToArray(regularPassword),
Utils.fromUtf8ToArray(regularEmail),
algorithm,
5000,
);
expect(Utils.fromBufferToB64(key)).toBe(regularKey);
});
}
function testHkdf(
algorithm: "sha256" | "sha512",
regularKey: string,
utf8Key: string,
unicodeKey: string,
) {
const ikm = Utils.fromB64ToArray("criAmKtfzxanbgea5/kelQ==");
const regularSalt = "salt";
const utf8Salt = "üser_salt";
const unicodeSalt = "😀salt🙏";
const regularInfo = "info";
const utf8Info = "üser_info";
const unicodeInfo = "😀info🙏";
it("should create valid " + algorithm + " key from regular input", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const key = await cryptoFunctionService.hkdf(ikm, regularSalt, regularInfo, 32, algorithm);
expect(Utils.fromBufferToB64(key)).toBe(regularKey);
});
it("should create valid " + algorithm + " key from utf8 input", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const key = await cryptoFunctionService.hkdf(ikm, utf8Salt, utf8Info, 32, algorithm);
expect(Utils.fromBufferToB64(key)).toBe(utf8Key);
});
it("should create valid " + algorithm + " key from unicode input", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const key = await cryptoFunctionService.hkdf(ikm, unicodeSalt, unicodeInfo, 32, algorithm);
expect(Utils.fromBufferToB64(key)).toBe(unicodeKey);
});
it("should create valid " + algorithm + " key from array buffer input", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const key = await cryptoFunctionService.hkdf(
ikm,
Utils.fromUtf8ToArray(regularSalt),
Utils.fromUtf8ToArray(regularInfo),
32,
algorithm,
);
expect(Utils.fromBufferToB64(key)).toBe(regularKey);
});
}
function testHkdfExpand(
algorithm: "sha256" | "sha512",
b64prk: string,
outputByteSize: number,
b64ExpectedOkm: string,
) {
const info = "info";
it("should create valid " + algorithm + " " + outputByteSize + " byte okm", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const okm = await cryptoFunctionService.hkdfExpand(
Utils.fromB64ToArray(b64prk),
info,
outputByteSize,
algorithm,
);
expect(Utils.fromBufferToB64(okm)).toBe(b64ExpectedOkm);
});
}
function testHash(
algorithm: "sha1" | "sha256" | "sha512" | "md5",
regularHash: string,
utf8Hash: string,
unicodeHash: string,
) {
const regularValue = "HashMe!!";
const utf8Value = "HǻshMe!!";
const unicodeValue = "😀HashMe!!!🙏";
it("should create valid " + algorithm + " hash from regular input", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const hash = await cryptoFunctionService.hash(regularValue, algorithm);
expect(Utils.fromBufferToHex(hash)).toBe(regularHash);
});
it("should create valid " + algorithm + " hash from utf8 input", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const hash = await cryptoFunctionService.hash(utf8Value, algorithm);
expect(Utils.fromBufferToHex(hash)).toBe(utf8Hash);
});
it("should create valid " + algorithm + " hash from unicode input", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const hash = await cryptoFunctionService.hash(unicodeValue, algorithm);
expect(Utils.fromBufferToHex(hash)).toBe(unicodeHash);
});
it("should create valid " + algorithm + " hash from array buffer input", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const hash = await cryptoFunctionService.hash(Utils.fromUtf8ToArray(regularValue), algorithm);
expect(Utils.fromBufferToHex(hash)).toBe(regularHash);
});
}
function testHmac(algorithm: "sha1" | "sha256" | "sha512", mac: string) {
it("should create valid " + algorithm + " hmac", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const computedMac = await cryptoFunctionService.hmac(
Utils.fromUtf8ToArray("SignMe!!"),
Utils.fromUtf8ToArray("secretkey"),
algorithm,
);
expect(Utils.fromBufferToHex(computedMac)).toBe(mac);
});
}
function testHmacFast(algorithm: "sha1" | "sha256" | "sha512", mac: string) {
it("should create valid " + algorithm + " hmac", async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const keyByteString = Utils.fromBufferToByteString(Utils.fromUtf8ToArray("secretkey"));
const dataByteString = Utils.fromBufferToByteString(Utils.fromUtf8ToArray("SignMe!!"));
const computedMac = await cryptoFunctionService.hmacFast(
dataByteString,
keyByteString,
algorithm,
);
expect(Utils.fromBufferToHex(Utils.fromByteStringToArray(computedMac))).toBe(mac);
});
}
function testRsaGenerateKeyPair(length: 1024 | 2048 | 4096) {
it(
"should successfully generate a " + length + " bit key pair",
async () => {
const cryptoFunctionService = getWebCryptoFunctionService();
const keyPair = (await cryptoFunctionService.rsaGenerateKeyPair(length)).map(
(k) => new Uint8Array(k),
);
expect(keyPair[0] == null || keyPair[1] == null).toBe(false);
const publicKey = await cryptoFunctionService.rsaExtractPublicKey(keyPair[1]);
expect(Utils.fromBufferToB64(keyPair[0])).toBe(Utils.fromBufferToB64(publicKey));
},
30000,
);
}
function getWebCryptoFunctionService() {
const platformUtilsMock = mock<PlatformUtilsService>();
platformUtilsMock.isEdge.mockImplementation(() => navigator.userAgent.indexOf(" Edg/") !== -1);
return new WebCryptoFunctionService(window);
}
function makeStaticByteArray(length: number) {
const arr = new Uint8Array(length);
for (let i = 0; i < length; i++) {
arr[i] = i;
}
return arr;
}

View File

@@ -1,469 +0,0 @@
import * as argon2 from "argon2-browser";
import * as forge from "node-forge";
import { Utils } from "../../platform/misc/utils";
import { CsprngArray } from "../../types/csprng";
import { CryptoFunctionService } from "../abstractions/crypto-function.service";
import { CbcDecryptParameters, EcbDecryptParameters } from "../models/domain/decrypt-parameters";
import { SymmetricCryptoKey } from "../models/domain/symmetric-crypto-key";
export class WebCryptoFunctionService implements CryptoFunctionService {
private crypto: Crypto;
private subtle: SubtleCrypto;
private wasmSupported: boolean;
constructor(globalContext: { crypto: Crypto }) {
if (globalContext?.crypto?.subtle == null) {
throw new Error(
"Could not instantiate WebCryptoFunctionService. Could not locate Subtle crypto.",
);
}
this.crypto = globalContext.crypto;
this.subtle = this.crypto.subtle;
this.wasmSupported = this.checkIfWasmSupported();
}
async pbkdf2(
password: string | Uint8Array,
salt: string | Uint8Array,
algorithm: "sha256" | "sha512",
iterations: number,
): Promise<Uint8Array> {
const wcLen = algorithm === "sha256" ? 256 : 512;
const passwordBuf = this.toBuf(password);
const saltBuf = this.toBuf(salt);
const pbkdf2Params: Pbkdf2Params = {
name: "PBKDF2",
salt: saltBuf,
iterations: iterations,
hash: { name: this.toWebCryptoAlgorithm(algorithm) },
};
const impKey = await this.subtle.importKey(
"raw",
passwordBuf,
{ name: "PBKDF2" } as any,
false,
["deriveBits"],
);
const buffer = await this.subtle.deriveBits(pbkdf2Params as any, impKey, wcLen);
return new Uint8Array(buffer);
}
async argon2(
password: string | Uint8Array,
salt: string | Uint8Array,
iterations: number,
memory: number,
parallelism: number,
): Promise<Uint8Array> {
if (!this.wasmSupported) {
throw "Webassembly support is required for the Argon2 KDF feature.";
}
const passwordArr = new Uint8Array(this.toBuf(password));
const saltArr = new Uint8Array(this.toBuf(salt));
const result = await argon2.hash({
pass: passwordArr,
salt: saltArr,
time: iterations,
mem: memory,
parallelism: parallelism,
hashLen: 32,
type: argon2.ArgonType.Argon2id,
});
argon2.unloadRuntime();
return result.hash;
}
async hkdf(
ikm: Uint8Array,
salt: string | Uint8Array,
info: string | Uint8Array,
outputByteSize: number,
algorithm: "sha256" | "sha512",
): Promise<Uint8Array> {
const saltBuf = this.toBuf(salt);
const infoBuf = this.toBuf(info);
const hkdfParams: HkdfParams = {
name: "HKDF",
salt: saltBuf,
info: infoBuf,
hash: { name: this.toWebCryptoAlgorithm(algorithm) },
};
const impKey = await this.subtle.importKey("raw", ikm, { name: "HKDF" } as any, false, [
"deriveBits",
]);
const buffer = await this.subtle.deriveBits(hkdfParams as any, impKey, outputByteSize * 8);
return new Uint8Array(buffer);
}
// ref: https://tools.ietf.org/html/rfc5869
async hkdfExpand(
prk: Uint8Array,
info: string | Uint8Array,
outputByteSize: number,
algorithm: "sha256" | "sha512",
): Promise<Uint8Array> {
const hashLen = algorithm === "sha256" ? 32 : 64;
if (outputByteSize > 255 * hashLen) {
throw new Error("outputByteSize is too large.");
}
const prkArr = new Uint8Array(prk);
if (prkArr.length < hashLen) {
throw new Error("prk is too small.");
}
const infoBuf = this.toBuf(info);
const infoArr = new Uint8Array(infoBuf);
let runningOkmLength = 0;
let previousT = new Uint8Array(0);
const n = Math.ceil(outputByteSize / hashLen);
const okm = new Uint8Array(n * hashLen);
for (let i = 0; i < n; i++) {
const t = new Uint8Array(previousT.length + infoArr.length + 1);
t.set(previousT);
t.set(infoArr, previousT.length);
t.set([i + 1], t.length - 1);
previousT = new Uint8Array(await this.hmac(t, prk, algorithm));
okm.set(previousT, runningOkmLength);
runningOkmLength += previousT.length;
if (runningOkmLength >= outputByteSize) {
break;
}
}
return okm.slice(0, outputByteSize);
}
async hash(
value: string | Uint8Array,
algorithm: "sha1" | "sha256" | "sha512" | "md5",
): Promise<Uint8Array> {
if (algorithm === "md5") {
const md = forge.md.md5.create();
const valueBytes = this.toByteString(value);
md.update(valueBytes, "raw");
return Utils.fromByteStringToArray(md.digest().data);
}
const valueBuf = this.toBuf(value);
const buffer = await this.subtle.digest(
{ name: this.toWebCryptoAlgorithm(algorithm) },
valueBuf,
);
return new Uint8Array(buffer);
}
async hmac(
value: Uint8Array,
key: Uint8Array,
algorithm: "sha1" | "sha256" | "sha512",
): Promise<Uint8Array> {
const signingAlgorithm = {
name: "HMAC",
hash: { name: this.toWebCryptoAlgorithm(algorithm) },
};
const impKey = await this.subtle.importKey("raw", key, signingAlgorithm, false, ["sign"]);
const buffer = await this.subtle.sign(signingAlgorithm, impKey, value);
return new Uint8Array(buffer);
}
// Safely compare two values in a way that protects against timing attacks (Double HMAC Verification).
// ref: https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/february/double-hmac-verification/
// ref: https://paragonie.com/blog/2015/11/preventing-timing-attacks-on-string-comparison-with-double-hmac-strategy
async compare(a: Uint8Array, b: Uint8Array): Promise<boolean> {
const macKey = await this.randomBytes(32);
const signingAlgorithm = {
name: "HMAC",
hash: { name: "SHA-256" },
};
const impKey = await this.subtle.importKey("raw", macKey, signingAlgorithm, false, ["sign"]);
const mac1 = await this.subtle.sign(signingAlgorithm, impKey, a);
const mac2 = await this.subtle.sign(signingAlgorithm, impKey, b);
if (mac1.byteLength !== mac2.byteLength) {
return false;
}
const arr1 = new Uint8Array(mac1);
const arr2 = new Uint8Array(mac2);
for (let i = 0; i < arr2.length; i++) {
if (arr1[i] !== arr2[i]) {
return false;
}
}
return true;
}
hmacFast(value: string, key: string, algorithm: "sha1" | "sha256" | "sha512"): Promise<string> {
const hmac = forge.hmac.create();
hmac.start(algorithm, key);
hmac.update(value);
const bytes = hmac.digest().getBytes();
return Promise.resolve(bytes);
}
async compareFast(a: string, b: string): Promise<boolean> {
const rand = await this.randomBytes(32);
const bytes = new Uint32Array(rand);
const buffer = forge.util.createBuffer();
for (let i = 0; i < bytes.length; i++) {
buffer.putInt32(bytes[i]);
}
const macKey = buffer.getBytes();
const hmac = forge.hmac.create();
hmac.start("sha256", macKey);
hmac.update(a);
const mac1 = hmac.digest().getBytes();
hmac.start("sha256", null);
hmac.update(b);
const mac2 = hmac.digest().getBytes();
const equals = mac1 === mac2;
return equals;
}
async aesEncrypt(data: Uint8Array, iv: Uint8Array, key: Uint8Array): Promise<Uint8Array> {
const impKey = await this.subtle.importKey("raw", key, { name: "AES-CBC" } as any, false, [
"encrypt",
]);
const buffer = await this.subtle.encrypt({ name: "AES-CBC", iv: iv }, impKey, data);
return new Uint8Array(buffer);
}
aesDecryptFastParameters(
data: string,
iv: string,
mac: string | null,
key: SymmetricCryptoKey,
): CbcDecryptParameters<string> {
const p = {} as CbcDecryptParameters<string>;
if (key.meta != null) {
p.encKey = key.meta.encKeyByteString;
p.macKey = key.meta.macKeyByteString;
}
if (p.encKey == null) {
p.encKey = forge.util.decode64(key.encKeyB64);
}
p.data = forge.util.decode64(data);
p.iv = forge.util.decode64(iv);
p.macData = p.iv + p.data;
if (p.macKey == null && key.macKeyB64 != null) {
p.macKey = forge.util.decode64(key.macKeyB64);
}
if (mac != null) {
p.mac = forge.util.decode64(mac);
}
// cache byte string keys for later
if (key.meta == null) {
key.meta = {};
}
if (key.meta.encKeyByteString == null) {
key.meta.encKeyByteString = p.encKey;
}
if (p.macKey != null && key.meta.macKeyByteString == null) {
key.meta.macKeyByteString = p.macKey;
}
return p;
}
aesDecryptFast({
mode,
parameters,
}:
| { mode: "cbc"; parameters: CbcDecryptParameters<string> }
| { mode: "ecb"; parameters: EcbDecryptParameters<string> }): Promise<string> {
const decipher = (forge as any).cipher.createDecipher(
this.toWebCryptoAesMode(mode),
parameters.encKey,
);
const options = {} as any;
if (mode === "cbc") {
options.iv = parameters.iv;
}
const dataBuffer = (forge as any).util.createBuffer(parameters.data);
decipher.start(options);
decipher.update(dataBuffer);
decipher.finish();
const val = decipher.output.toString();
return Promise.resolve(val);
}
async aesDecrypt(
data: Uint8Array,
iv: Uint8Array | null,
key: Uint8Array,
mode: "cbc" | "ecb",
): Promise<Uint8Array> {
if (mode === "ecb") {
// Web crypto does not support AES-ECB mode, so we need to do this in forge.
const parameters: EcbDecryptParameters<string> = {
data: this.toByteString(data),
encKey: this.toByteString(key),
};
const result = await this.aesDecryptFast({ mode: "ecb", parameters });
return Utils.fromByteStringToArray(result);
}
const impKey = await this.subtle.importKey("raw", key, { name: "AES-CBC" } as any, false, [
"decrypt",
]);
// CBC
if (iv == null) {
throw new Error("IV is required for CBC mode.");
}
const buffer = await this.subtle.decrypt({ name: "AES-CBC", iv: iv }, impKey, data);
return new Uint8Array(buffer);
}
async rsaEncrypt(
data: Uint8Array,
publicKey: Uint8Array,
algorithm: "sha1" | "sha256",
): Promise<Uint8Array> {
// Note: Edge browser requires that we specify name and hash for both key import and decrypt.
// We cannot use the proper types here.
const rsaParams = {
name: "RSA-OAEP",
hash: { name: this.toWebCryptoAlgorithm(algorithm) },
};
const impKey = await this.subtle.importKey("spki", publicKey, rsaParams, false, ["encrypt"]);
const buffer = await this.subtle.encrypt(rsaParams, impKey, data);
return new Uint8Array(buffer);
}
async rsaDecrypt(
data: Uint8Array,
privateKey: Uint8Array,
algorithm: "sha1" | "sha256",
): Promise<Uint8Array> {
// Note: Edge browser requires that we specify name and hash for both key import and decrypt.
// We cannot use the proper types here.
const rsaParams = {
name: "RSA-OAEP",
hash: { name: this.toWebCryptoAlgorithm(algorithm) },
};
const impKey = await this.subtle.importKey("pkcs8", privateKey, rsaParams, false, ["decrypt"]);
const buffer = await this.subtle.decrypt(rsaParams, impKey, data);
return new Uint8Array(buffer);
}
async rsaExtractPublicKey(privateKey: Uint8Array): Promise<Uint8Array> {
const rsaParams = {
name: "RSA-OAEP",
// Have to specify some algorithm
hash: { name: this.toWebCryptoAlgorithm("sha1") },
};
const impPrivateKey = await this.subtle.importKey("pkcs8", privateKey, rsaParams, true, [
"decrypt",
]);
const jwkPrivateKey = await this.subtle.exportKey("jwk", impPrivateKey);
const jwkPublicKeyParams = {
kty: "RSA",
e: jwkPrivateKey.e,
n: jwkPrivateKey.n,
alg: "RSA-OAEP",
ext: true,
};
const impPublicKey = await this.subtle.importKey("jwk", jwkPublicKeyParams, rsaParams, true, [
"encrypt",
]);
const buffer = await this.subtle.exportKey("spki", impPublicKey);
return new Uint8Array(buffer);
}
async aesGenerateKey(bitLength = 128 | 192 | 256 | 512): Promise<CsprngArray> {
if (bitLength === 512) {
// 512 bit keys are not supported in WebCrypto, so we concat two 256 bit keys
const key1 = await this.aesGenerateKey(256);
const key2 = await this.aesGenerateKey(256);
return new Uint8Array([...key1, ...key2]) as CsprngArray;
}
const aesParams = {
name: "AES-CBC",
length: bitLength,
};
const key = await this.subtle.generateKey(aesParams, true, ["encrypt", "decrypt"]);
const rawKey = await this.subtle.exportKey("raw", key);
return new Uint8Array(rawKey) as CsprngArray;
}
async rsaGenerateKeyPair(length: 1024 | 2048 | 4096): Promise<[Uint8Array, Uint8Array]> {
const rsaParams = {
name: "RSA-OAEP",
modulusLength: length,
publicExponent: new Uint8Array([0x01, 0x00, 0x01]), // 65537
// Have to specify some algorithm
hash: { name: this.toWebCryptoAlgorithm("sha1") },
};
const keyPair = await this.subtle.generateKey(rsaParams, true, ["encrypt", "decrypt"]);
const publicKey = await this.subtle.exportKey("spki", keyPair.publicKey);
const privateKey = await this.subtle.exportKey("pkcs8", keyPair.privateKey);
return [new Uint8Array(publicKey), new Uint8Array(privateKey)];
}
randomBytes(length: number): Promise<CsprngArray> {
const arr = new Uint8Array(length);
this.crypto.getRandomValues(arr);
return Promise.resolve(arr as CsprngArray);
}
private toBuf(value: string | Uint8Array): Uint8Array {
let buf: Uint8Array;
if (typeof value === "string") {
buf = Utils.fromUtf8ToArray(value);
} else {
buf = value;
}
return buf;
}
private toByteString(value: string | Uint8Array): string {
let bytes: string;
if (typeof value === "string") {
bytes = forge.util.encodeUtf8(value);
} else {
bytes = Utils.fromBufferToByteString(value);
}
return bytes;
}
private toWebCryptoAlgorithm(algorithm: "sha1" | "sha256" | "sha512" | "md5"): string {
if (algorithm === "md5") {
throw new Error("MD5 is not supported in WebCrypto.");
}
return algorithm === "sha1" ? "SHA-1" : algorithm === "sha256" ? "SHA-256" : "SHA-512";
}
private toWebCryptoAesMode(mode: "cbc" | "ecb"): string {
return mode === "cbc" ? "AES-CBC" : "AES-ECB";
}
// ref: https://stackoverflow.com/a/47880734/1090359
private checkIfWasmSupported(): boolean {
try {
if (typeof WebAssembly === "object" && typeof WebAssembly.instantiate === "function") {
const module = new WebAssembly.Module(
Uint8Array.of(0x0, 0x61, 0x73, 0x6d, 0x01, 0x00, 0x00, 0x00),
);
if (module instanceof WebAssembly.Module) {
return new WebAssembly.Instance(module) instanceof WebAssembly.Instance;
}
}
} catch {
return false;
}
return false;
}
}