#[macro_use] extern crate napi_derive; #[napi] pub mod passwords { /// Fetch the stored password from the keychain. #[napi] pub async fn get_password(service: String, account: String) -> napi::Result { desktop_core::password::get_password(&service, &account) .map_err(|e| napi::Error::from_reason(e.to_string())) } /// Fetch the stored password from the keychain that was stored with Keytar. #[napi] pub async fn get_password_keytar(service: String, account: String) -> napi::Result { desktop_core::password::get_password_keytar(&service, &account) .map_err(|e| napi::Error::from_reason(e.to_string())) } /// Save the password to the keychain. Adds an entry if none exists otherwise updates the existing entry. #[napi] pub async fn set_password( service: String, account: String, password: String, ) -> napi::Result<()> { desktop_core::password::set_password(&service, &account, &password) .map_err(|e| napi::Error::from_reason(e.to_string())) } /// Delete the stored password from the keychain. #[napi] pub async fn delete_password(service: String, account: String) -> napi::Result<()> { desktop_core::password::delete_password(&service, &account) .map_err(|e| napi::Error::from_reason(e.to_string())) } // Checks if the os secure storage is available #[napi] pub async fn is_available() -> napi::Result { desktop_core::password::is_available().map_err(|e| napi::Error::from_reason(e.to_string())) } } #[napi] pub mod biometrics { use desktop_core::biometric::{Biometric, BiometricTrait}; // Prompt for biometric confirmation #[napi] pub async fn prompt( hwnd: napi::bindgen_prelude::Buffer, message: String, ) -> napi::Result { Biometric::prompt(hwnd.into(), message).await.map_err(|e| napi::Error::from_reason(e.to_string())) } #[napi] pub async fn available() -> napi::Result { Biometric::available().await.map_err(|e| napi::Error::from_reason(e.to_string())) } #[napi] pub async fn set_biometric_secret( service: String, account: String, secret: String, key_material: Option, iv_b64: String, ) -> napi::Result { Biometric::set_biometric_secret( &service, &account, &secret, key_material.map(|m| m.into()), &iv_b64, ) .map_err(|e| napi::Error::from_reason(e.to_string())) } #[napi] pub async fn get_biometric_secret( service: String, account: String, key_material: Option, ) -> napi::Result { let result = Biometric::get_biometric_secret(&service, &account, key_material.map(|m| m.into())) .map_err(|e| napi::Error::from_reason(e.to_string())); result } /// Derives key material from biometric data. Returns a string encoded with a /// base64 encoded key and the base64 encoded challenge used to create it /// separated by a `|` character. /// /// If the iv is provided, it will be used as the challenge. Otherwise a random challenge will be generated. /// /// `format!("|")` #[napi] pub async fn derive_key_material(iv: Option) -> napi::Result { Biometric::derive_key_material(iv.as_deref()) .map(|k| k.into()) .map_err(|e| napi::Error::from_reason(e.to_string())) } #[napi(object)] pub struct KeyMaterial { pub os_key_part_b64: String, pub client_key_part_b64: Option, } impl From for desktop_core::biometric::KeyMaterial { fn from(km: KeyMaterial) -> Self { desktop_core::biometric::KeyMaterial { os_key_part_b64: km.os_key_part_b64, client_key_part_b64: km.client_key_part_b64, } } } #[napi(object)] pub struct OsDerivedKey { pub key_b64: String, pub iv_b64: String, } impl From for OsDerivedKey { fn from(km: desktop_core::biometric::OsDerivedKey) -> Self { OsDerivedKey { key_b64: km.key_b64, iv_b64: km.iv_b64, } } } } #[napi] pub mod clipboards { #[napi] pub async fn read() -> napi::Result { desktop_core::clipboard::read().map_err(|e| napi::Error::from_reason(e.to_string())) } #[napi] pub async fn write(text: String, password: bool) -> napi::Result<()> { desktop_core::clipboard::write(&text, password) .map_err(|e| napi::Error::from_reason(e.to_string())) } } #[napi] pub mod processisolations { #[napi] pub async fn disable_coredumps() -> napi::Result<()> { desktop_core::process_isolation::disable_coredumps() .map_err(|e| napi::Error::from_reason(e.to_string())) } #[napi] pub async fn is_core_dumping_disabled() -> napi::Result { desktop_core::process_isolation::is_core_dumping_disabled() .map_err(|e| napi::Error::from_reason(e.to_string())) } #[napi] pub async fn disable_memory_access() -> napi::Result<()> { desktop_core::process_isolation::disable_memory_access() .map_err(|e| napi::Error::from_reason(e.to_string())) } } #[napi] pub mod powermonitors { use napi::{threadsafe_function::{ErrorStrategy::CalleeHandled, ThreadsafeFunction, ThreadsafeFunctionCallMode}, tokio}; #[napi] pub async fn on_lock(callback: ThreadsafeFunction<(), CalleeHandled>) -> napi::Result<()> { let (tx, mut rx) = tokio::sync::mpsc::channel::<()>(32); desktop_core::powermonitor::on_lock(tx).await.map_err(|e| napi::Error::from_reason(e.to_string()))?; tokio::spawn(async move { while let Some(message) = rx.recv().await { callback.call(Ok(message.into()), ThreadsafeFunctionCallMode::NonBlocking); } }); Ok(()) } #[napi] pub async fn is_lock_monitor_available() -> napi::Result { Ok(desktop_core::powermonitor::is_lock_monitor_available().await) } } #[napi] pub mod ipc { use desktop_core::ipc::server::{Message, MessageType}; use napi::threadsafe_function::{ ErrorStrategy, ThreadsafeFunction, ThreadsafeFunctionCallMode, }; #[napi(object)] pub struct IpcMessage { pub client_id: u32, pub kind: IpcMessageType, pub message: Option, } impl From for IpcMessage { fn from(message: Message) -> Self { IpcMessage { client_id: message.client_id, kind: message.kind.into(), message: message.message, } } } #[napi] pub enum IpcMessageType { Connected, Disconnected, Message, } impl From for IpcMessageType { fn from(message_type: MessageType) -> Self { match message_type { MessageType::Connected => IpcMessageType::Connected, MessageType::Disconnected => IpcMessageType::Disconnected, MessageType::Message => IpcMessageType::Message, } } } #[napi] pub struct IpcServer { server: desktop_core::ipc::server::Server, } #[napi] impl IpcServer { /// Create and start the IPC server without blocking. /// /// @param name The endpoint name to listen on. This name uniquely identifies the IPC connection and must be the same for both the server and client. /// @param callback This function will be called whenever a message is received from a client. #[napi(factory)] pub async fn listen( name: String, #[napi(ts_arg_type = "(error: null | Error, message: IpcMessage) => void")] callback: ThreadsafeFunction, ) -> napi::Result { let (send, mut recv) = tokio::sync::mpsc::channel::(32); tokio::spawn(async move { while let Some(message) = recv.recv().await { callback.call(Ok(message.into()), ThreadsafeFunctionCallMode::NonBlocking); } }); let path = desktop_core::ipc::path(&name); let server = desktop_core::ipc::server::Server::start(&path, send).map_err(|e| { napi::Error::from_reason(format!( "Error listening to server - Path: {path:?} - Error: {e} - {e:?}" )) })?; Ok(IpcServer { server }) } /// Stop the IPC server. #[napi] pub fn stop(&self) -> napi::Result<()> { self.server.stop(); Ok(()) } /// Send a message over the IPC server to all the connected clients /// /// @return The number of clients that the message was sent to. Note that the number of messages /// actually received may be less, as some clients could disconnect before receiving the message. #[napi] pub fn send(&self, message: String) -> napi::Result { self.server .send(message) .map_err(|e| { napi::Error::from_reason(format!("Error sending message - Error: {e} - {e:?}")) }) // NAPI doesn't support u64 or usize, so we need to convert to u32 .map(|u| u32::try_from(u).unwrap_or_default()) } } }